Previous pages

From PC5214 wiki
Jump to navigation Jump to search

Current goals

Obtain enough setup to measure a pulse from an APD. For example:

picture taken from [1]. This is the first goal to achieve before trying to improve


Setup

  • "test" setup:
    • photon source >> laser attenuator >> APD >> ADC >> Raspberry Pi
  • control setup:
    • photon source >> laser attenuator >> "Professional" SPCM >> ADC >> Raspberry Pi

a setup of APD kit, taken from [1]

Equipment needed

Semiconductor device:

  • May need a semiconductor fabrication facility with the ability to make thin films on Silicon.
  • A photodiode or APD to see how it performs.

Analog electronics:

  • Circuit design to convert analog signal to digital signal.

Prebuild devices/hardware:

  • laser source or photon source
  • laser attenuator
  • computer/Raspberry Pi for data processing
  • Analog to Digital Converter (ADCs)
  • "Professional" grade Single Photon Counting Module (SPCM) to characterize experimental setup.
  • Fast oscilloscope.

tl;dr wishlist:

  • Avalanche Photodiodes (need any 1)
    A picture of an APD. SAP series
    • Laser Components SAP500 (passive)
    • Perkin Elmer C30902SH (passive)
    • Perkin Elmer SPCM-AQR-15 (active)
    • MPD PD-050-CTD-FC (active)
  • APD testing kit
  • Laser source
  • Photon attenuator
  • Computer/Raspberry Pi for data processing

Potential Problems

  • Dark noise may be overwhelming, so we may need to find a way to suppress it. (I suspect this is why commercial devices cost $2k-5k)
  • Fabrication cost of the custom semiconductor device may be too high or impractical... gg.com (or we just refurbish an LED/solar panel, this will have lower PDE, but maybe we can use electronics to maximise the PDE.)
  • Electronic circuitry costs. (Unlikely to be too costly)
  1. 1.0 1.1 Cite error: Invalid <ref> tag; no text was provided for refs named fypjanet