Custom atomic beam source: Difference between revisions

From PC5214 wiki
Jump to navigation Jump to search
Tiangao (talk | contribs)
Tiangao (talk | contribs)
Line 28: Line 28:
</div>
</div>
We can plot the vapor pressure with Temperature range from 800°C to 1000°C:
We can plot the vapor pressure with Temperature range from 800°C to 1000°C:
[[File:Vapor Pressure.jpeg|center|thumb|600px|Figure 1: Vapor Pressure Plot]
[[File:Vapor pressure.png|center|thumb|600px|Figure 1: Vapor Pressure Plot]


====Maxwell distribution====
====Maxwell distribution====

Revision as of 05:36, 12 April 2022

Team Members and Lab location

Lu Tiangao, Li Putian in S14-03 Travis's Lab

Introduction

In this report, we introduced an atomic oven designed by ourselves. The whole design will be suitable for atoms that need temperature ranging from 500K to 1300K. The idea came from our lab's commercial atomic beam source was both expensive and having some defects.

Theory part

Vapor Pressure

Indium is the group III atom, and it has two stable isotopes In-113 and In-115, the atom we use is In-115 with an abundance of 95.7%, the melting point is 156.6°C. To calculate the density of atoms coming from the nozzles. We should know the pressure and temperature of the gas, which the density formula is given by:

When a material is in thermodynamic equilibrium with its vapor at a given temperature in a closed system, the pressure at this time is called vapor pressure. The vapor pressure of indium is given by

We can plot the vapor pressure with Temperature range from 800°C to 1000°C: [[File:Vapor pressure.png|center|thumb|600px|Figure 1: Vapor Pressure Plot]

Maxwell distribution

Custom oven design

Items needed

  • Custom Flange feedthrough
  • Thermocouples and thermocouple feedthrough
  • Tantalum heating wires and current feedthrough
  • Crucible and nozzle
  • PBN holding rings
  • Vacuum Flange, cube and viewports
  • Heating wire power system
  • Cooling system for oven

Oven setup

  • Wiring practice
  • Washing parts for vacuum

Oven measurement

Conclusion

Reference